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Background

Retrosynthesis Problem

Fundamental problem in chemistry /
drug discovery / material science.

Given a target molecule, the task is to
figure out a series of reactions that
lead to the synthesis of the molecule.

Criterion for "better routes” may vary:
 shorter with higher yields.
* more economically efficient.
* more environmentally friendly.

Building Blocks

Intermediate
Compounds

Target Molecule

Existing Planners

______________

______________

Proof Number Search =—>»

Monte Carlo Tree Search

* Rollout time-consuming and
comes with high variance.
e Sparsity in variance estimation.
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« Formulation mismatch.
« Hand-designed criterion during
search, hard to tune and generalize.

Problem Statement

One-step Retrosynthesis

Input: a target molecule t.

Output: k possible reactions that could
lead to the synthesis of t in one step.

Note: In retrosynthesis planning, we
assume a good one-step model is given.
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Retrosynthesis Planning

Input:

« atarget molecule t

« a set of building blocks M

* a one-step retrosynthesis model B

Output: a series of possible reactions
predicted with B that start with molecules in
M and ultimately lead to synthesis of t.

Note: We consider the following criteria:
« High quality
* Routes should be chemically sound with
high probability
« Reactants and reactions should be of
low costs
« Efficient
« Shorter routes are preferred
We assume these can be captured by c(+).

AND-OR Tree Representation

Formulation

 Each molecule is encoded as an OR node @
(like m), requiring at least one of children to

be solved.

 Each reaction is encoded as an AND node
(like P), requiring all children to be solved. (¢) (d) (f)

Example:

Reaction P: molecule ¢ + molecule d — molecule m.

Reaction Q: molecule f — molecule m.

Algorithm Framework

L» (a) Selection

Pick a frontier node with the
best V,(m|T)

» (c) Update

Propagate the values to
related nodes
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» (b) Expansion

Expand the node with an
AND-OR stump

Algorithm Details

Key ldea: Prioritize the synthesis of the molecules in the current best plan.

Definition of V,(m|T): under the current search tree T, the cost of the current best
plan containing m for synthesizing target t.

Algorithm 1: Retro*(¢)

1 Initialize T' =

(V,E) with V « {t}, & + 0;

2 while route not found do
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 Update V;(m) for m in F(T');

(a) Select the most promising frontier node
(b) Expand the node with one-step model

Mpegt < argmax,, c zry Vi(m);
{Ri, Siy c(Ri) Yoy + B(Mueat);
for: < 1to kdo
Add R; to ' under my,e¢;
for j < 1to |S;| do

L Add Sij to 7" under R;;

(c) Update current estimate of V function

10 return route;

Computation of V,(m|T): using the structure of the AND-OR tree, we can
decompose V.(m|T) into simpler components in a recursive fashion.

(1) Denote V,,, = V,,(m|®), the cost of synthesizing m.

(2) Define reaction number rn(- |T): rn(R|T) = ) + Z n(m|T)
minimum estimated cost needed for a mech(R
molecule/reaction to happen in the Vi, m € F(T)
current tree. ra(m|T) = {minREch(m) rn(R|T), otherwise

Example for (2): rn(t|T) = min(rn(PlT),rn(QlT))
m(Q|T) =c(Q) + Vg + 1,

Example for (3): Vi (f|T) =c(P) +c(R) +V; + V. + Vr + V}
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Estimating V,,, from Planning Solutions

Dataset: Rirain = {7t;

= (m;,v;, R;, B(m;))} each tuple contains target molecule m;, best

synthesis cost v;, expert reaction R;, and one-step retrosynthesis candidates B(m;).

Optimize _
P . Regression 10ss: L, (rt;) = (Vin, — v;)?
11111 ErtiNRtr'ain ‘CTGQ(TtZ) + .
Vi) Consistency loss: |
A]ERjNB(mz‘)\{Ri} [Econ(’r'tz-, Rj)]] Leon(rti, Rj) =max < 0,v; + € —c(R Z Vi ?
m’'€S;
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Guarantees on finding the optimal solution

Proof
Similar to A* admissibility proof.

Theorem 1 Assuming V,, or its lowerbound is known for
all encountered molecules m, Algorithm [ is guaranteed
to return an optimal solution, if the halting condition is
changed to “the total costs of a found route is no larger than

argmin,,, c r(r) Vi(m)”.

Remark

0 is the lowerbound of 1},, for any
molecule m If cost Is deflned as
the negative log-likelihood.

Retro* solution

NH3

Expert route:
requires 4 steps
to synthesis the
molecule

Figure: Sample solution route produced by Retro*. Expert route requires 3 more steps to
synthesize one molecule in the route.

Setting:

To create the retrosynthesis dataset, we use reactions in USPTO to build a knowledge
graph from which we extract synthesis routes and split them into train/validation/test set.
The available molecule list is obtained from the eMolecules database.

One-step model:
We trained a template-based MLP model for one-step retrosynthesis. The model learns

from training set reactions and predicts top-50 templates for each product, as well as their
likelihood. The templates are then applied to the product to get corresponding reactions.

Algorithm Retro*  Retro*-0 DFPN-E MCTS  Greedy DFS
Success rate  86.84%  79.47% 55.26%  33.68% 22.63%
Time 156.58 208.58 279.67 380.02 388.15
Shorter routes 50 52 59 30 11
Better routes 112 102 25 18 26

Performance Table: The number of shorter and better routes are obtained from
the comparison against the expert routes, in terms of length and total costs.
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Figure: Counts of the best solutions among
all algorithms in terms of length/cost.

Figure: Influence of time on performance.

Baselines:

o Greedy - greedy Depth First Search: prioritize the reaction with the highest likelihood.

o MCTS - Monte-Carlo Tree Search (Segler et al., 2018).

o DFPN-E - a variant of Proof Number Search (Kishimoto et al.,
- obtained by setting V,,, to 0 (ablation study).

2019).

Evaluation:
o Time: number of calls to the one-step model (= 0.3s per call, occupying > 99% time).

o Solution quality: total costs of reactions / number of reactions (length).
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