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Machine Learning + Drug Design
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https://icml.cc/virtual/2020/poster/6732

Molecule Optimization

= Design new molecules with desired properties:
» Property scoring function f (potent, non-toxic, easy to synthesize, ...)
= Challenges: searching over the vast space of > 10°° molecules.
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Property Scoring

» Task: Learn a molecule generative model p(-) to maximize max,.y E;,[f(9)]
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RL for Generative Design

» Generation policy p: decide a new atom (and bonds) to add to the current partial molecule.
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Autoregressive generative process

» Use RL to optimize p:
= Reward r = f(g) only obtained at the end.
» Sparse reward, long horizon — hard to optimize.
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Conditioning on Substructures

» Rationales — substructures that most contributes to the desired molecular properties.

= Conditioning generation policy p on rationales.
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Conditioning autoregressive generative process

= Use RL to optimize p:
= Shorter horizon — easier to optimize.

» QObtaining rationales is hard
» Designed manually: require human effort.
= MCTS (Jin et al., 2020): unable to optimize rationales jointly with p.
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Our Approach: MolEvol

= Hierarchical Generative Model

Rationale Q
Distribution s ~p J g~ pol-
rationale s
= Alternating Optimization (EM-style)

J(0,p(5)) = Egupy () [F(9)] + A - Hp(s)]

« E-step
« Fix po(g|s), update p(s).
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MolEvol: Algorithm Overview

= Init
= A set of seed molecules are given. Explainable local search
= Parameter 6°. = H i ”
E-step B T s ain(g)
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» Produce a set of rationales with .
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= Optimize p(s) (closed form).
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MolEvol: E-step

* |n the t-th round, given
= Parameter 9!—1,
» Seed molecules G 1,

= The rationale distribution has a closed
form:

p() = 2 exp (LEgmpy, (10 F(9)])

= The support set of p’(s)is given by the
explainable local search:
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MolEvol: Explainable Graph Model

= To explain P(Y = 1|g) £ f(g), we maximize the mutual information between Y and rationale s.

= Variational objective:
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MolEvol: M-step

* |n the t-th round, given
= Distribution p’(s),
= Parameter Qt—l, Rationale samples Seed molecules

= We update ¢ from #—1 using RL, QIP'(s)) o

= |nit state s ~ p'(s),

g O
= Reward r = f(g) Q/ ﬁ/ /Y\Q reward
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Experiments

» Task: multi-property molecular optimization (Li et al., 2018; Jin et al.,2020)
» GSK-3p4 (Lietal., 2018), JNK3 (Li et al., 2018), QED (Bickerton et al., 2012), SA (Ertl et al., 2009)
N

~ N ~ N\ ~ /
Potential targets in the treatment Quantitative estimate of drug-  Synthetic accessibility.
of Alzheimer’s disease. likeness.

= Scoring function: f(g) = |GSK-33(g) - INK3(g) - QED(g) - SA(g)] i
» Metrics: we generate N = 20K molecules from each method and measure,
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QNU score.
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Comparing to Baselines

= Baselines:

» RationaleRL (Jin et al., 2020): MCTS for rationale extraction + RL.

= REINVENT (Olivecrona et al., 2017): RL on SMILES string.

= MSO (Winter et al., 2019): Particle Swarm Optimization (PSO) in latent space.
» GA-D(t) (Nigam et al., 2020): neural network-enhanced genetic algorithm.

Algorithm  MolEvol [MCTS] [FixM] [FixR]|RationaleRL REINVENT MSO GA-D(t)
Successrate 93.0% 77.7% 67.3% 66.3% 61.1% 46.6% 57.7% 62.0%
Novelty 75.7% 72.5% 67.4% 54.6% 57.4% 66.4% 28.6% 19.4%
Diversity 0.681 0.707  0.723 0.727 0.749 0.666 - -

QNU 527% 47.4% 39.3% 28.3% 29.5% 7.4% 16.4% 12.0%
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Property Score Distributions
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Sample Rationale
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Future Work

» Generalized methodology
1. First identify useful structural elements,
2. Then improve the design based on these elements.
3. Reiterate the process.

» Discrete structure optimization in other domains

= Program synthesis
= AutoML
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Thanks for listening!

For more details, please refer to our paper/full slides/poster/repo:



https://openreview.net/pdf?id=jHefDGsorp5
http://binghongchen.net/pdf/ICLR21-molopt-slide.pdf
http://binghongchen.net/pdf/ICLR21-molopt-poster.pdf
https://github.com/binghong-ml/MolEvol
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