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Task: Robot Arm Fetching

Problem: planning a robot arm to fetch a book on a shelf

= Given (statesigye, Stategoqr, MaPeps)

* Find the shortest collision-free path

Traditional planners: based on sampling the state space
= Construct a tree to search for a path
» Use random samples from a uniform distribution to

grow the tree \

Goal Goal

o) ol Sample
2 Inefficient
) \/_,ﬁ New

Start
Parent Parent




Daily Task: Robot Arm Fetching

Similar problems are solved again and again with (states;q,¢, Stategeqr, mapyps)~Dist

Can we learn from past planning experience to build a smarter sampling-based
planner than simply uniform random sampling?

Yes! Learned planner — improve sample efficiency — solve problems in less time.



Sampling from Uniform v.s. Learned Dist

Uniform Distribution Learned qg(s|tree, Sgoa1, MaPops)

Failed, 500 samples Success, <60 samples

Different sampling distributions for growing a search tree on the same problem.



Neural Exploration-Exploitation Trees (NEXT)
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« Learn a search bias from past planning experience and uses it to guide future planning.
« Balance exploration and exploitation to escape local minima.

« Improve itself as it plans.



Learning to Plan by Learning to Sample

1. Define a sampling policy gg(s|tree, sgoq1, mapeps).
2. Learn 8 from past planning experience.
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Pure exploitation policy



Learning Sampling Bias by Imitation

* The learned ng(- |SparentrSg0al’ mapobs) IS
pointing to the goal and avoiding the
obstacles.

» The learned Vy(s|s, a1, map,ps ) (heatmap)
decreases as it moves away from the goal.

We learn mgy and Vy by imitating the shortest
solutions from previous planning problems.
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Value lteration as Inductive Bias for w/V

’ u(s) € R3

:

s=(x,v,0y,,0y) € RN*2

.’ u(sgoal) € R’

Original Planning Space Latent Planning Space

Intuition: first embedding the state and problem into a discrete latent representation
via an , then the neuralized value iteration (planning module)
Is performed to extract features for defining Vy and ny.



Neural Architecture for /V

Latent representation of states Neuralized value iteration
| Repeat T'times
Map: (d,d) Goal state: (q) Goal Attention J Ir W
__, Attention __ | _ Stack—s Conv | |/ *(0)_, Planning _ | (1)
Module ~ Module
B R
State s: (q) State Attention l
] V£,
Attention . w ( ) 4 (S)
—_ — b X > S
Module Element-wise Product ,ﬁ-* (S, | '(/)(S))
|| Sum over first 2 dimensions

Overall model architecture.



Attention-based State Embedding

Workspace state, i.e.

spatial locations

(Ixlconv

relu)xky,

Spatial Attention: (d,d, 1)
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Attention module. For illustration purpose, assume workspace is 2d and map shape is 3x3.




Neuralized Value Iteration

Input: h; € R4*dxde Input: ¢; € RA*4xde
/ = Plannih
( Conv1x1,d, ) module
A 4

LSTM input: x; € RI*dxde

v

LSTM cell (input size: d,, hidden size: d,)
Batch size: d x d

N ' /

Output: h; € R4¥d*de Output: ¢; € R4*d*de

Planning module. Inspired by Value Iteration Networks*.
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Escaping the Local Minima
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AlphaGo-Zero-style Learning

Algorithm 3: Meta Self-Improving Learning AI p h aG o) Ze ro

Initialize dataset Dy; . .

for cpoch n + L to N do MCTS as a policy improvement
Sample a planning task U’;
T < TSA(U) with € ~ Unif[0, 1], and € - RRT :: Expand + (1 — €) - NEXT :: Expand; Operator

Postprocessing 7 with RRT* :: Postprocess;
Dn S Dn—l U {(T U)}7
for j < Oto L do

Sample (75, U;) from Dy.; NEXT (Meta Self-Improving
Reconstruct optimal path {s}, and the cost of paths basgd on 7;; )
Update parameters W < W — 77VW€(\~/*, i R R Leal’ NninN g)
, SEILE = Bl B IL1S Exploration with random
\ \ sampling as a policy
| Improvement operator!
Anneal € Use e-exploration to

Improve the result
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Experiments
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Experiment Results
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Case Study: Robot Arm Fetching

5s 10s 15s 20s 25s 30s 35s 40s 45s 50s

NEXT || 0.579][ 0.657 | 0.703 | 0.709 | 0.745 | 0.743 | 0.746 | 0.752 | 0.772 | 0.763
CVAE | 0354 | 0437 | 0482 | 0.509 | 0.507 | 0.539 | 0.553 | 0.551 | 0.579
Reinforce | 0.160 | 0.170 | 0.200 | 0.150 | 0.180 | 0.190 | 0.175 | 0.180 | 0.225 | 0.175
BIT* | 0.226 | 0.288 | 0.320 | 0.365 | 0.364 | 0.429 | 0.425 | 0.422 | 0.443 | 0.475
RRT* | 0.135 | 0.148 | 0.144 | 0.136 | 0.147 | 0.159 | 0.152 | 0.158 | 0.157 | 0.165

Success rates of different planners under varying time limits, the
higher the better.
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Thanks for listening!

For more details, please refer to our paper/full slides/poster:



https://openreview.net/pdf?id=rJgJDAVKvB
http://binghongchen.net/pdf/ICLR-planning.pdf
http://binghongchen.net/pdf/ICLR-planning-poster.pdf

