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Task: Robot Arm Fetching

Problem: planning a robot arm to fetch a book on a shelf

▪ Given (𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑎𝑙, 𝑚𝑎𝑝𝑜𝑏𝑠)

▪ Find the shortest collision-free path

Traditional planners: based on sampling the state space

▪ Construct a tree to search for a path

▪ Use random samples from a uniform distribution to 
grow the tree

Sample 

inefficient
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Daily Task: Robot Arm Fetching

Similar problems are solved again and again with (𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑎𝑙, 𝑚𝑎𝑝𝑜𝑏𝑠)~𝐷𝑖𝑠𝑡

Can we learn from past planning experience to build a smarter sampling-based 
planner than simply uniform random sampling? 

Yes! Learned planner → improve sample efficiency → solve problems in less time.
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Sampling from Uniform v.s. Learned Dist

Different sampling distributions for growing a search tree on the same problem.

Uniform Distribution

Failed, 500 samples

Learned 𝑞𝜃(𝑠|𝑡𝑟𝑒𝑒, 𝑠𝑔𝑜𝑎𝑙, 𝑚𝑎𝑝𝑜𝑏𝑠)

Success, <60 samples
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Neural Exploration-Exploitation Trees (NEXT)

• Learn a search bias from past planning experience and uses it to guide future planning.

• Balance exploration and exploitation to escape local minima.

• Improve itself as it plans.
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Learning to Plan by Learning to Sample

1. Define a sampling policy 𝑞𝜃(𝑠|𝑡𝑟𝑒𝑒, 𝑠𝑔𝑜𝑎𝑙 , 𝑚𝑎𝑝𝑜𝑏𝑠).

2. Learn 𝜃 from past planning experience.

= argmax𝑠𝑉(𝑠)

~𝜋(⋅ |parent)

𝑞𝜃 𝑠 𝑡𝑟𝑒𝑒, 𝑠𝑔𝑜𝑎𝑙 , 𝑚𝑎𝑝𝑜𝑏𝑠 :

1. 𝑠𝑝𝑎𝑟𝑒𝑛𝑡 = argmax𝑠∈𝑡𝑟𝑒𝑒𝑉𝜃 𝑠 𝑠𝑔𝑜𝑎𝑙 , 𝑚𝑎𝑝𝑜𝑏𝑠 ;

2. 𝑠𝑛𝑒𝑤~𝜋𝜃 ⋅ 𝑠𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑠𝑔𝑜𝑎𝑙 , 𝑚𝑎𝑝𝑜𝑏𝑠 .

Pure exploitation policy
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Learning Sampling Bias by Imitation

▪ The learned 𝜋𝜃 ⋅ 𝑠𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑔𝑜𝑎𝑙, 𝑚𝑎𝑝𝑜𝑏𝑠 is 

pointing to the goal and avoiding the 

obstacles.

▪ The learned 𝑉𝜃 𝑠 𝑠𝑔𝑜𝑎𝑙, 𝑚𝑎𝑝𝑜𝑏𝑠 (heatmap) 

decreases as it moves away from the goal.

We learn 𝜋𝜃 and 𝑉𝜃 by imitating the shortest 

solutions from previous planning problems.
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Value Iteration as Inductive Bias for 𝜋/𝑉

Intuition: first embedding the state and problem into a discrete latent representation 

via an attention-based module, then the neuralized value iteration (planning module)

is performed to extract features for defining 𝑉𝜃 and 𝜋𝜃.
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Latent representation of states Neuralized value iteration

Neural Architecture for 𝜋/𝑉

Overall model architecture.



Attention-based State Embedding

Attention module. For illustration purpose, assume workspace is 2d and map shape is 3x3.
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Workspace state, i.e. 

spatial locations

softmax

softmax

outer product

entries >= 0

sum to 1

Remaining state, i.e. 

configurations
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Neuralized Value Iteration

Planning module. Inspired by Value Iteration Networks*.

*Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information Processing Systems. 2016.



Escaping the Local Minima

Pure 
exploitation 
policy

Exploration-
exploitation 
policy

Variance 𝑈 estimates the local density
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AlphaGo-Zero-style Learning
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AlphaGo Zero

MCTS as a policy improvement 

operator.

NEXT (Meta Self-Improving 

Learning)

Exploration with random 

sampling as a policy 

improvement operator!
Use 𝜖-exploration to 

improve the result

Anneal 𝜖



Experiments
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( ) distinct maps

(planning problems) 

per environment
⨉ 3000
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1000 testing



Experiment Results

Learning-based Non-learning

Proposed method Ablation studies Baselines Ablation Baselines

MSIL Architecture UCB RL SL Heuristic Sampling-based

NEXT-KS NEXT-GP GPPN-KS GPPN-GP BFS Reinforce CVAE Dijkstra RRT* BIT*
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Search Tree Comparison
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Case Study: Robot Arm Fetching

Success rates of different planners under varying time limits, the 

higher the better. 
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Thanks for listening!

Paper Full Slides

For more details, please refer to our paper/full slides/poster: 

Poster
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